

Pergamon

PII: S0040-4039(97)01717-6

Enantioselective Aldol Reaction with a Bromofluoroketene Silyl Acetal Catalyzed by a Chiral Lewis Acid

Katsuhiko Iseki,* Yoshichika Kuroki and Yoshiro Kobayashi

MEC Laboratory, Daikin Industries, Ltd., Miyukigaoka, Tsukuba, Ibaraki 305, Japan

Abstract: Bromofluoroketene silyl acetal 1 was prepared in pure form. Aldol reactions of 1 with achiral aldehydes catalyzed by chiral Lewis acid 2 proceeded with high enantioselectivity to give optically active syn- and anti- α -bromo- α -fluoro- β -hydroxy esters 3a-h, respectively (up to 99% ee). © 1997 Elsevier Science Ltd.

The synthesis of chiral fluoroorganic compounds is important in biological and medicinal chemistry in view of the influence of fluorine's unique properties on biological activity.¹ Fluorine, due to its high electronegativity, has a considerable electronic effect on its neighboring groups in a molecule. The introduction of fluorine into bioactive compounds frequently leads to the discovery of novel and potent biochemical tools and medicinal agents which are chiral in many cases.² Recently, we have successfully isolated difluoroketene ethyl trimethylsilyl acetal and explored its application to asymmetric aldol reactions for the synthesis of optically active α , α -difluoro- β -hydroxy esters.³ In this paper, we disclose for the first time the preparation of bromofluoroketene silyl acetal 1 and the catalytic enantioselective Mukaiyama-aldol reaction of the acetal 1 in the presence of chiral Lewis acid 2 to afford optically active α -bromo- α -fluoro- β -hydroxy esters 3.⁴

In recent years, α -bromo- α -fluoro- β -hydroxy esters 3, prepared by the Reformatsky reaction of dibromofluoroacetate, have been shown to be useful precursors for the diastereoselective synthesis of α -fluoro- β -hydroxy⁵ and α -allyl- α -fluoro- β -hydroxy esters.⁶ However, no attempts have been made to bring about enantioselective synthesis of chiral α -bromo- α -fluoro- β -hydroxy esters 3. We began by preparing bromofluoroketene silyl acetal 1. Ethyl dibromofluoroacetate was added to a mixture of chlorotrimethylsilane and activated zinc powder in THF -20°C. After 1 h at -20°C, the resulting zinc salt-containing solution of the bromofluoroketene silyl acetal 1 was diluted with *n*-pentane and filtered to remove the zinc salt, and the filtrate was concentrated *in vacuo*. After the dilution-filtration-concentration sequence was repeated once more, the residue was distilled under reduced pressure to provide 1 as a colorless oil in pure form.⁷ Aldol reactions of 1 with a variety of aldehydes were carried out using Masamune's catalyst 2.⁸

A solution of an aldehyde (1.0 mmol) in nitroethane (2 ml) was added to a solution of acetal 1 (1.2 mmol) and the catalyst (0.2 mmol) in nitroethane (3 ml) over 3 h at -78°C. After 1 h at -78°C, the reaction mixture was quenched with saturated aqueous NaHCO₃. After desilylation with 2 M aqueous HCl, *syn*- and *anti*-aldol products (*syn*- and *anti*-**3a**-h) were isolated by flash chromatography and the optical yields were determined by HPLC using a chiral column. The *syn*-aldol obtained from benzaldehyde (*syn*-**3a**) was shown to have the (2*S*, 3*R*)-configuration by X-ray analysis of the corresponding camphanate.

Entry	Aldehyde (RCHO)	Product	syn/anti ^a	ee (syn), ^b %	ee (anti), ^b %	Yield, ^c %
1	C ₆ H ₅ CHO	3a	69:31	98 (2S,3R) ^d	90 (2 <i>R</i> ,3 <i>R</i>)	90
2	(E)-C ₆ H ₅ CH=CHCHO	3b	57:43	83	83	96
3	C ₆ H ₅ CH ₂ CH ₂ CHO	3c	46:54	98	98	89
4	C6H5CH2OCH2CHO	3d	57:43	97e	97e	81
5	<i>с</i> -С ₆ Н ₁₁ СНО	3e	52:48	94	89	74
6	CH ₃ CH ₂ CH ₂ CHO	3f	46:54	97f	98	90
7	(CH ₃) ₂ CHCH ₂ CHO	3g	48:52	98	98	96
8	(C ₂ H ₅) ₂ CHCHO	3h	54:46	99	98	70

Table 1. Enantioselective Aldol Reactions with Bromofluoroketene Silyl Acetal 1 Catalyzed by Lewis Acid 2

a) Based on isolated yields of *syn*- and *anti*-aldols; b) Determined by HPLC using a Daicel Chiralcel OD-H, OB-H or AD column; c) Isolated yields based on the starting aldehydes; d) Determined by X-ray analysis of the camphanate obtained from *syn*-3a and (-)camphanic chloride; e) Determined using the corresponding acetate; f) Determined using the corresponding 3,5-dinitrobenzoate.

Finally, a mixture of syn- and anti-aldols **3a** obtained from benzaldehyde using the present enantioselective aldol reaction was reduced with Bu₃SnH in the presence of Et₃Al and Et₃B in CH₂Cl₂ at -78°C according to the procedure reported by Ishihara *et al.*^{5d} to afford ethyl (2*S*,3*R*)-2-fluoro-3-hydroxy-3-phenylpropanoate in 95% yield and with high diastereo- and enantioselectivities (syn/anti = 91/9,^{5b,9} 98% ee). Application of the present study to synthesis of useful fluorinated bioactive compounds is now being carried out.

References and Notes

- 1. For reviews see: a) Welch, J.T. Tetrahedron 1987, 43, 3123-3197. b) Bravo, P.; Resnati, G. Tetrahedron: Asymm. 1990, 1, 661-692. c) Resnati, G. Tetrahedron 1993, 49, 9385-9445.
- a) Biomedical Aspects of Fluorine Chemistry; Filler, R.; Kobayashi, Y. Eds.; Kodansha Ltd. and Elsevier Biomedical Press: Tokyo and Amsterdam, 1982. b) Biomedical Frontiers of Fluorine Chemistry; Ojima, I.; McCarthy, J.R.; Welch, J.T. Eds.; Americal Chemical Society: Washington, D.C., 1996.
- 3. Iseki, K.; Kuroki, Y.; Asada, D.; Kobayashi, Y. Tetrahedron Lett. 1997, 38, 1447-1448.
- For a diastereoselective synthesis of α-bromo α-fluoro alcohols, see: Shimizu, M.; Takebe, Y.; Kuroboshi, M.; Hiyama, T. Tetrahedron Lett. 1996, 37, 7387-7390.
- 5. a) Ishihara, T.; Imura, K.; Yamanaka, H. The 14th International Symposium on Fluorine Chemistry, Yokohama, Japan, 1994, Abstr., No. 1P49. b) Imura, K.; Ishihara, T.; Yamanaka, H. The 19th Fluorine Conference of Japan, Okayama, 1995, Abstr., No. P-26. c) Imura, K.; Ishihara, T.; Yamanaka, H. The 20th Fluorine Conference of Japan, Nagoya, 1996, Abstr., No. P-30. d) Ishihara, T.; Kuwahata, S.; Yamanaka, H. 72nd National Meeting of the Chemical Society of Japan, Tokyo, March 1997, Abstr., No. 3G247.
- 6. Mima, K.; Hori, K.; Ishihara, T.; Yamanaka, H. 72nd National Meeting of the Chemical Society of Japan, Tokyo, March 1997, Abstr., No. 2PA010.
- Acetal 1 (a mixture of *E* and *Z*-isomers): B.p. 37.0-38.5°C / 1.2 Torr; IR (neat) v: 2964, 1703, 1255, 1149, 1060, 851 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) & 0.25 (s, 5.54H), 0.25 (s, 3.46H), 1.26 (t, *J* = 7.1 Hz, 1.85H), 1.28 (t, *J* = 7.1 Hz, 1.15H), 3.88 (q, *J* = 7.1 Hz, 1.23H), 3.95 (q, *J* = 7.1 Hz, 0.77H); ¹⁹F NMR (188 MHz, CDCl₃) & 133.1 (s, 0.62F), 134.5 (s, 0.38F); MS (EI) *m/z*: 258 [M⁺], 256 [M⁺], 230, 228, 143, 141.
- Catalyst 2 was prepared by stirring a mixture of BH₃·THF and p-toluenesulfonamide of the corresponding amino acid in nitroethane at 45°C for 1 h. See: a) Parmee, E.R.; Tempkin, O.; Masamune, S. J. Am. Chem. Soc. 1991, 113, 9365-9366. b) Parmee, E.R.; Hong, Y.; Tempkin, O.; Masamune, S. Tetrahedron Lett. 1992, 33, 1729-1732.
- 9. The ratio was determined by ¹⁹F NMR [CFCl₃, CDCl₃; syn (δ): -203.09 (dd), anti (δ): -197.97 (dd)].

(Received in Japan 14 July 1997; revised 15 August 1997; accepted 18 August 1997)